
Attribute Series of Software Evolution for Software
Quality Assessment

Varaprakash, Praveen Kumar Malladi, Venkata Kiran Talluri

Department of Computer Science and Engineering,
GITAM University Visakhapatnam, A.P., INDIA

Abstract— The Varity and complexity of software increased
from day to day, the software quality assurance must be used to
make a balance between quality and productivity. In software
applications defect density and defect prediction are essential
for efficient resource allocation in software evolution. We
presented a new approach to software defect prediction based
on value series of evolution attributes. In an empirical study we
applied data mining techniques for value series based on
evolution attributes. For that, we developed models utilizing
genetic programming and linear regression to accurately predict
software defects. In our study, we investigated the data of three
independent projects, two open source and one commercial
software system. The results show that by utilizing series of
these attributes we obtain models with high correlation
coefficients (between 0.716 and 0.946). Further, we argue that
prediction models based on series of a single variable are
sometimes superior to the model including all attributes: in
contrast to other studies that resulted in size or complexity
measures as predictors, we have identified the number of
authors and the number of commit messages to versioning
systems as excellent predictors of defect densities.

Keywords—	
 Defect Density, Quality Assessment, Data mining

I. INTRODUCTION
In Software, how does the course of development

over time influence defect densities? To address this question
we focus on series classification techniques, where we
generate value series from software evolution and take it as
input for quality assessment.

Defect prediction models of previous studies often
relied on metrics that represent the state of the software
system at a specific moment in time. Such metrics describe,
for example, the sum of changes implemented on a certain
part of the system or are other types of measures such as size
and complexity metrics [2].

In this paper we show that change over time is an
important aspect in software prediction models. The time-
related features have been very important for good prediction
models, we go a step further and explicitly focus on series of
metric values.

Sequential patterns are important in many domains,
be-cause they can be exploited to improve the prediction
accuracy of classifiers. A sequence x =(x1, x2, x3, . . . , x n)of
change events during software development contains the in-
formation on the course of development additionally to the
pure attributes of the sum of all change events describing the
state at the final point in time. As one of the first studies we
analyze value series of evolution data to create defect
prediction models.

Our evolution attributes of source files refer to
measures obtained from versioning and bug reporting data
such as the number of bug fixes or the number of authors
working on a particular file. Evolution attributes are
measured daily over a period of two months to predict the

number of defects in source files in the subsequent two
months. The data of three independent software projects in
our field study allows us to build prediction models with high
accuracy using series of evolution attributes.

Our study can be compared to other prediction
approaches since we included the same data of a previous
study [20] taken from a commercial system into our analysis.
Additionally, we broadened our evaluation by incorporating
data from open source projects and created prediction models
on the evolution data of these different software projects.

This paper is organized as follows. We present a
description of our knowledge discovery process in Section 2.
Section 3 lays the foundation through the preparation of
evolution data. Section 4 explains how we set up evolution
series, which are used as input to the series mining of Section
5.

Our results are reported in Section 6 , in section 7
and Section 8 finishes with conclusions.

2. KNOWLEDGE DISCOVERY PROCESS
Several consecutive steps are executed in our

knowledge discovery process to obtain prediction models
based on value series. The basic process is as follows:

First, the data collection steps extract evolution data
from two sources: versioning systems such as CVS and issue
tracking systems such as Jira. Data items taken from different
systems have to be assembled into a joined data model to
establish an evolution database. Additionally, a relation-ship
is established between the data items from a single data
source (e.g. the transactions of the versioning system are
reconstructed to group items into sets of co-changed
elements).

Next, the evolution database is used to compute
change attributes such as the number of lines added for bug
fixes, the number of co-changed files, or the number of
modifications without a commit message. These are the
characteristics of our data items that are used to create value
series for defect prediction. Fenton and Neil pointed out that
a sound prediction model has to incorporate different types of
attributes [4]. Accordingly, we analyze several types of
attributes, where a value series is created for each attribute
type. Additionally, series containing attributes of all
categories represent the changes over time for a single
instance (i.e. a file).

In the next step we take the value series of evolution
at-tributes as the basis for our defect prediction models. To be
able to apply classification algorithms to the value series we
extract features describing the relevant characteristics of the
value series. In data mining the input attributes used by the
algorithms are called features. An example of such a feature
is the maximum number of files changed to-gether regarding
a particular file. The feature extraction is done automatically

Varaprakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4843-4849

4843

with the help of genetic programming, in which several
operations are applied on the data points in the value series.
The genetic algorithm searches the feature space guided by a
fitness function (i.e. the correlation coefficient of our defect
prediction models).

The best features discovered through genetic
programming are the input of the regression algorithms to
create the prediction model. The platform for our series
mining activities is the YALE machine learning environment
[14]. It allows the design of operator chains for a large
number of learning problems and includes many data mining
algorithms such as support vector machines, decision tree
learners, Bayesian learners, etc.

Finally, we describe the results of a field study, in
which we applied the prediction models to several projects
taken from three different domains to evaluate the accuracy
of the prediction. The following sections describe each step in
de-tail and present our results.

3. PREPARING EVOLUTION DATA
There are many different systems that all record

different aspects of the development and evolution of a
software system. Project managers have to be able to observe
the status of individual tasks as well as the progress of the en-
tire project. Developers need information about what is re-
quested from them and need storage systems for their results.
Thus, different aspects are covered by different systems,
which we have to integrate for our analysis.
3.1 Data Extraction

As data sources for our defect prediction we utilize
versioning and issue tracking systems. Currently our
approach supports the versioning system CVS and the issue
tracking systems Jira and Bugzilla. CVS keeps track of all
changes in source files. For each file we retrieve these change
logs, parse, and store the extracted information into the
evolution database [20]. Issue or bug report data is obtained
from Jira or Bugzilla. These systems track bug and feature
requests from users and customers. We process each request
and add the information to the database.
3.2 Data Processing

Software components are related with each other
through shared data or method calls, or inheritance relations.
During software development a relationship is also
established when developers work on several classes or
modules to accomplish a certain task. Co-change coupling
during the evolution of a software system provides valuable
information in the context of maintenance [5]. We obtain
couplings from the versioning systems by reconstructing
transactions when files are submitted together to CVS. Thus,
transactions Tn are defined as a set of files, which were
checked-in into a versioning system by a single author with
an equal commit message. To capture the entire transaction,
possibly lasting several minutes we use a dynamic time
window approach. Every file submission outside of a
previous transaction de-fines the start of a new transaction
lasting initially for 60 seconds. When another file submission
is discovered within the time frame of this transaction then
the file is added and the transaction time is expanded to last
until 60 seconds after the last file submission time.

Co-change coupling is established based on common

transactions of files. Two entities (e.g. files) are coupled, if a
modification of the implementation affected both entities. The
intensity of coupling between two entities a, b can be
determined by counting all transactions where a and b are
members of the same transaction, i.e., C = {(a, b) |a, b � T n}
is the set of change couplings and |C| is the intensity of
coupling [19].
3.3 Combining Data Sources

To count defect densities of files we attach defect in-
formation stored in the issue tracking system with the file
information from the versioning system. For this step we
inspect the commit messages associated with revisions of
source files for references to issues, which is accomplished
with regular expressions. When a matching issue is found, a
link between the issue and the corresponding CVS log entry
is stored only if the creation date of this issue is before the
submission of the file to CVS.

4. GENERATING EVOLUTION SERIES

In this paper the focus is on the lifetime of source
files during software evolution. For this we measure a set of
evolution attributes for each source file over time and
compose multiple value series describing the data points of
the at-tributes as a sequence of measures. In our field study
we use two months of development time to predict the defects
of the following two months (see Section 6.2). The first two
months comprise 61 days. On all days of this series period we
measure the attributes for each file. For example the number
of lines added within one day is summarized for the data
points of this attribute in the value series. As a result many
values in the series are zero, as in a development project not
all source files are modified on each day. The number of
defects is predicted for the entire period of the following two
months for each source file. Thus, the in-stances for the
prediction models are files. In the following we describe the
different evolution attributes and the generation of series in
detail.

A definition of generalized series is used for value
series: In a series each element xi is composed of two
components. The first is the index describing a position on a
straight line (e.g. time). The second is a vector of values. In
our case we use two types of vectors. One is a reduced case
where only one attribute represents the vector. In the second
case the dimension of the vector is given by the number of
evolution attributes .
4.1 Evolution Attributes

Using the information stored in the evolution
database we compute a number of attributes that quantify the
soft-ware evolution in a source file. According to previous
studies, which showed that relative data outperforms absolute
values in defect prediction [16], we use the following
evolution attributes as foundation for our value series of
relative measures. All measures are collected within a time
frame of two months, where the data points are accumulated.
• Lines Added this measure represents the sum of lines
added. This measure is one of the indicators of size, where
the developer probably adds functionality through new source
lines.
• Lines Deleted describes the number of lines removed
from a file. When a certain line is changed the versioning
system counts one line added and one line re-moved. The

Varaprakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4843-4849

4844

number of deleted lines is additionally an indicator for a
”clean up” mentality to keep only the used code.
• Number Changes is the number of modifications
implemented within a single day on a given file. This is a
general activity indicator.
• Number Authors is the number of authors working on a
single file. When several authors work on the same day on
one file, we expect interferences between the changes.
• Author Switches describes the number of times the work
of a file is handed over from one author to an-other. When,
for example, two authors work in the sequence author1,
author2, author2, author1 we denote two author switches.
When the work of several authors is strongly interwoven, we
expect the strongest impact on defects.
• Commit Messages indicates the number of different
commit message from developers on changes. We see the
commit message as an indicator for the discipline of
developers, as developers sometimes tend to reuse the
message of the last commit instead of describing the actual
work.
• With No Message describes the number of changes
without a commit message. This provides insight into the
discipline of the developers. This could be an indicator that
the developer is in a hurry.
• Number Bugfixes is the number of issues that caused
changes in the file. A file with many defects in the past is
expected to have defects in the future [7].
• Bugfix Lines Added is the counterpart to the number of
lines added, but this time the number of lines is only taken
into account if the change is a bug fix according to the
information from the issue tracking system.
• Bug-fix Lines Deleted measures the number of lines
deleted from a file only for bug fixes.
• Couplings are the strength of co-change coupling of a
file with other files. It counts how many times a change was
done with other files. Coupling has been an indicator for
architectural weaknesses [19].
• Co-Changed Files – in contrast to the Couplings – de-
scribes the number of files that were changed together with
the file of interest. For several modifications each co-changed
files is counted only once. We expect the more files are
changed together, the higher is the complexity and the more
difficult it is to keep the consistency.
• Co-Changed New Files is the number of files that were
created together with a change to the investigated file. When
new files are introduced into a system, it is an indicator for
growth and new functionality.
• Transaction Lines Added is the number of lines added in
all files that have couplings with the file of interest. This
measure the entire work of a commit of files that are related
to the file of interest.
• Transaction Lines Deleted is the number of lines deleted
in all files with common transactions on changes.
• Transaction Bug-fix Lines Added measures the number
of lines added for all files during a change event that treats a
bug.
• Transaction Bug-fix Lines Added describes the number
of lines deleted for all files during bug fixes together with the
file of interest.
4.2 Value Series

The absolute values of the evolution attributes,

which are described in the previous section, are used to
construct the final value series containing relative measures
ordered by time. For each day the relative attribute value is
computed and added to the value series. For example, we use
the number of authors relative to the number of changes on
each day in our series period. The sequence 1/1, 0, 2/3, 1/1
would result for four days when one change is committed on
the first day, no change happens on the second day, two
developers implemented a total of three changes on the third
day, and one change is committed on the fourth day.

The following list of relative measures is used to
create value series per file for each day. For each relative
feature a division of relative values from the previous section
is computed.
• LinesAdd: Lines of code added within a day / Total lines
of code until this day.
• LinesDel: Lines of code deleted within a day / Total lines
of code until this day.
• ChangeCount: Number of changes within a day / Total
number of changes in the history of the file until this day.
• Authors: Number of authors within a day / Number of
changes within this day
• AuthorSwitches: Number of switches of the author /
Number of authors
• CommitMessages: Number of different commit mes-
sages / Number of changes
• WithNoMessage: Number of changes without commit
message / Number of commit messages
• BugfixCount: Number of bug fixes / Number of changes
• BugfixLinesAdd: Lines added for bug fixes / Number of
lines added (any type)
• BugfixLinesDel: Lines deleted for bug fixes / Number of
lines deleted (any type)
• CoChangeCount: Number of couplings / Number of
changes
• CoChangedFiles: Number of co-changed files / Number
of changes
• CoChangedNewFiles: Number of newly introduced files
that are co-changed / Number of co-changed files
• TLinesAdd: Number of lines added in all co-changed
files / Number of couplings
• TLinesDel: Number of lines deleted in all co-changed
files / Number of couplings
• TBugfixLinesAdd: Number of lines added in all files for
bug fixes / Number of lines added
• TBugfixLinesDel: Number of lines deleted in all files for
bug fixes / Number of lines deleted

5. PREDICTING DEFECTS BASED ON EVOLUTION SERIES
Given the value series of relative evolution attributes

as described in the previous section, the aim of our approach
is to derive models for predicting the number of defects in
source files. For the model generation we use”classical” data
mining algorithms such as linear regression. These algorithms
are not able to handle value series in the explicit
representation, but can operate on sets of attributes instead of
sets of series of values.
We generate a new representation of our series information
that is suitable for linear regression. This task is called feature
extraction, where each series is described by a set of relevant
characteristics that make different evolution series

Varaprakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4843-4849

4845

distinguishable. In a similar manner we could describe a
value series containing positions of the sun on earth with the
following features: one cycle lasts for 24 hours, the maxi-
mum is reached at noon, and sunrise and sunset are related
with the degree of latitude on earth.
The feature extraction itself is decomposed into a set of basic
operators. For example functions returning the minimum,
average, or maximum of the values in a series are basic
operators. Other basic operators return an index such as the
location of a peak value within a given series. Such basic
operators are assembled into an operator tree describing the
extraction steps of the final features. However, the manual
selection of an optimal set of operators is a tedious task.
Therefore, machine learning is used to select appropriate
operator tree, where the selection is done with the help of
genetic algorithms.

Thus we have to carry out two learning tasks for our
defect prediction.
1. Learning a set of operator trees for the feature extraction
utilizing genetic programming. The resulting features
describe relevant characteristics of evolution series for data
mining algorithms such as linear regression.
2. Learning a model for defect prediction from the
extracted features.
5.1 Extracting Features from Series

In the process of feature extraction a set of basic
operators is organized into a tree, where each operator uses
the output of the predecessor. The output of the operators at
the leaves produce the features of the series. We distinguish
two types of basic operators: Transformations and functions:
Transformations convert a series into another series.
Different types of transformations are available for our defect
prediction approach such as filters (e.g. smoothing),
frequency transformations (e.g. Fourier transformation),
generalized windowing, etc. Windowing operators apply a
given function on a range of values within the series and
additionally slide the window over the series. Others are
branches that pass on the interim results to two successor sub-
trees.
Functions generate single values based on the entire value
series and are always the last step of the feature ex-traction
process (i.e. the leaf nodes of the operator tree). Examples of
functions are statistics such as average, variance, standard
deviation. These functions may be applied on the values
themselves or on the indexes of the values, where for
example the index of a peak value could be extracted. For an
extensive list of transformations and functions see [14].
5.1.1 Genetic Programming

The (locally) optimal feature extraction approach
(i.e. operator tree of transformations and functions) is elicited
with genetic programming utilized on the operator trees.
Mutations randomly insert a new operator, delete an operator,
replace an operator, or change the parameters of an operator.
Crossover switches a sub-tree from one feature description
tree by a sub-tree from another tree. According to the
standard process of genetic programming the instances with
the highest fitness are selected for the next generation.
Selection is done based on a tournament between all members
of a generation in the genetic algorithm.
Fitness of the operator trees for the tournament selection is
assessed based on the defect prediction capability of the

resulting features. Our fitness function is the regression
algorithm itself that is used for the generation of the
prediction model. Thus, for each operator tree a regression
function is generated based on a training set of a random
sample containing 50 evolution series instances and the
accuracy of the prediction of defects is used as the fitness
value. As a result, the operator trees generating features that
predict the defects best are selected for the next generation.
Initiation of the first generation in the genetic algorithm is
based on 50 operator trees, where the operators are randomly
selected from the pool of available transformations and
functions.
We limited the maximal number of generations by 8. Further,
the following parameters are defined for our approach:
probability of adding a new operator = 0.4, probability of
adding a branching operator to create new sub-trees = 0.05,
probability of changing an operator = 0.4, probability of
removing an operator = 0.2, probability of performing a
crossover = 0.5, probability of changing a parameter = 0.1.

5.2 Applying Data-Mining Algorithms to Series Features

The best features selected by the genetic programming
algorithm are used for the creation of the prediction of
defects. The data mining algorithm for our prediction is linear
regression, as our outcome as well as our features from value
series are numeric. This is a staple method in statistics where
the predicted value is represented by a linear combination of
the input attributes (i.e. features) with weights w0, w1, w2, . . .
, w n and attributes a1, a2, . . . , an:

x = w0 + w1a1 + w2a2 + . . . + w n a n
The weights are derived from the training data set

minimizing the sum of squares of the distance between the
predicted value x and the actual one y. The distance is
summarized for all instances (k) of the training data set:

∑(y-∑ wi ai)2

 k n
The numeric prediction algorithms are used twice in

our process. First it is used for the evaluation of fitness in
genetic programming, where prediction models are build on a
small random sample of evolution series and the correlation
coefficient is utilized to select the best features. Finally, we
apply the prediction algorithms on the extracted features
taking all instances of the training set (i.e. all evolution
series) into account to create the final prediction model.

6. EVALUATION
We evaluated the approach of defect prediction

based on series mining with the help of a field study, where
we selected different real world projects and analyzed the
predictability of defects in the near future.
6.1 Field Study

In our field study we analyzed two open source
projects (ArgoUML and the spring framework) and a
commercial software system, which we selected to get
comparability with the results of previous studies ([20, 21]).
The commercial software system is from the health care
domain, written in Java and contains more than 8.600 classes
with 735.000 lines of code. ArgoUML and the spring
framework are large well-known open source projects both
developed in Java and consist of about 5.000 and 10.000
classes, respectively. In Java classes are almost equivalent to

Varaprakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4843-4849

4846

files, thus we use files as basic instances in our analysis.
6.2 Evaluation Setup

To estimate the accuracy of our defect prediction
approach we use the same time periods for all projects,
regard-less in which development state the project is. In a
previous study we have shown that defects that occur within a
short time before a release can be better predicted than
defects after a release [20]. In our current research activity we
have two periods:
Series Period: November-December 2005. In this period we
take evolution attributes from the versioning system and
construct value series to represent the flow of the
development over time. Each series of the at-tributes from
Section 4.2 has a length of 61 days given the two months of
the series period. This information is used in our series
mining to predict the defects of a source file in the next
period.
• Target Period: January-February 2006. With our prediction
models based on series mining we try to predict the number
of all defects in the target period, where the defects are
counted based on the information from the issue tracking
system and are mapped to files as described in Section
3.3.These two periods are also used in our previous study
[20] and thus enable us to compare the results of these two
approaches.
6.3 Measuring Prediction Performance
For the assessment of our prediction models we use the
following metrics:
• Correlation Coefficient (Cor. C.) ranges from -1 to 1 and
measures the statistical correlation between the predicted
values and the actual ones in the test set. A value of 0
indicates no correlation, whereas 1 describes a perfect
correlation. Negative correlation indicates inverse correlation,
but should not occur for prediction models. The correlation
coefficient is computed with the following formula, where p
are the predicted values and a are the actual ones:

Where 𝒑 =1/n ∑ i pi and 𝒂 =1/n ∑ i ai
The correlation coefficient is our primary performance
indicator.
• Mean Absolute Error (Abs. Error) is the average of the
magnitude of individual absolute errors. This assessment
metrics does not have a fixed range like the correlation
coefficient, but is geared to the values to be predicted. As a
result, the closer the mean absolute error is to 0 the better. A
value of 1 denotes that on average the predicted value differs
from the actual number of defects by 1 (e.g. 3 instead of 4).
The mean absolute error is computed with the following
formula:

(|p1 – a1| + . . . + |pn – an|) / n
• Mean Squared Error is the average of the squared
magnitude of individual errors and it tends to exaggerate the
effect of outliers – instances with larger prediction error –
more than mean absolute error. The range of the mean
squared error is geared to the ranges of predicted values,
similar to the mean absolute error. But this time the error
metrics is squared, which overemphasize predictions that are
far away of the actual number of defects. The quality of the
prediction model is good, when the mean squared error is

close to the mean absolute error. The formula for mean
squared error is:

((p1-a1)2+…..+ (pn-an)2) / n
As validation method we use 10-fold cross

validation to estimate the performance of our prediction
models. In this method the set of source files is randomly
split into 10 disjoint sets of equal size. The validation is
executed 10 times, where the linear regression is trained on 9
of 10 folds and the remaining one is used to calculate the
error rates and the correlation coefficient. After the 10 turns
the final performance estimates are generated through
averaging the results of the 10 turns.

The validation used two times: First it is used for the
assessment of the fitness of the features during genetic
programming and finally it is used for the assessment of the
prediction models resulting from linear regression with the
best features (see Section 5).

7. RESULTS

In the following we describe the field study with the
selected software projects and discuss performance measures
of our prediction models. Furthermore, we investigate the
significance of evolution attributes.
7.1 How well can we predict the number of defects in

source files with series mining?
To answer this question we take the entire evolution

series containing values of all attributes such as LinesAdd or
Au-thors (see Section 4.2). Table 1 describes the performance
measures of our defect prediction models. The first remark-
able number is the very high correlation coefficient of the
commercial system from the healthcare domain. A correlation
coefficient of 1 would indicate perfect correlation of the
prediction with the actual value, where the received 0.946
indicates that very strong prediction models can be built
based on evolution series. The other two projects reach a
correlation coefficient greater than 0.7, which is still good.

According to the first performance indicator also the
mean absolute error of all projects is low. The absolute error
has to be measured in relation with the predicted quantities.
In our case we predict the number of defects that lie in the
range of 0 up to 7. As a result, the measured mean absolute
errors of 0.208 to 0.306 are low. The commercial project has
a higher absolute error than the two open source projects
because it has more files with multiple defects (e.g. 5 or 6
defects), which can be seen in Table 2.

Table1. Defect prediction with series including all

evolution attributes

 Cor.C. Abs.Error Sqr.Error
Commercial system 0.946 0.306 0.508
Spring framework 0.716 0.229 0.770

ArgoUML 0.730 0.208 0.624

Table2. Defect distribution

No. of defects Comm. Spring Argo
per file System UML

1 46 80 47
2 11 15 9
3 5 3 2
4 7 2 0
5 2 0 0
6 1 0 0

Varaprakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4843-4849

4847

The good prediction measures are supported by the
mean squared error, which emphasizes outliers more than the
mean absolute error. The squared error is lowest for the
commercial project with a value of 0.508. This corresponds
with the high correlation coefficient and indicates that the
prediction is very accurate. However, also the squared errors
of Spring with 0.770 and of ArgoUML with 0.624 are low.
Thus, we conclude:
“Accurate prediction models can be developed based on
series mining of evolution data”.

7.2 Which attributes are most significant for defect
prediction?

In the previous section we presented prediction
models based on series mining with a very high correlation
coefficient and good error measures. These models are
created from an evolution series containing all attributes
described in Section 4. We are interested to find out which
attributes are most significant to create accurate prediction
models. For this we create prediction models on value series
for each single evolution attribute. Table 3 presents the
correlation coefficients of all generated models, as this
performance indicator represents the relationship between the
predicted values and the actual ones.

All three projects of the field study exhibit high
values for the correlation coefficient on the series containing
the number of authors. In the commercial system as well as in
ArgoUML this single series is even the one with the highest
correlation coefficient. For the spring framework it is only
exceeded by the series with ChangeCounts, which describes
the number of changes per day in relation to total number of
changes for this particular file. In the two other projects the
ChangeCount is ranked only in the middle-field.

Table3. Correlation coefficients of series with a
single attribute and the summarizing series

including all attributes

 Comm. Spring Argo
 Cor.C. Cor.C. Cor.C.

LinesAdd 0.616 0.195 0.161
LinesDel 0.305 0.111 0.234

ChangeCount 0.517 0.653 0.268
Authors 0.946 0.628 0.760

AuthorSwitches 0.622 0.210 0.357
CommitMsgs 0.943 0.480 0.459
WithNoMsg 0.273 0.008 -0.054
BugfixCount 0.455 0.290 0.253

BugfixLinesAdd 0.437 0.294 0.295
BugfixLinesDel 0.736 0.319 0.244

CoChangeCount 0.548 0.336 0.388
CoChangedFiles 0.481 0.240 0.409
CoChangedNew 0.426 0.171 0.233

TLinesAdd 0.598 0.622 0.442
TLinesDel 0.586 0.579 0.225

TBugfixLinesAdd 0.482 0.318 0.362
TBugfixLinesDel 0.460 0.319 0.296

series of all attributes 0.946 0.716 0.730

Authors seems to provide good input to series
mining, which contrasts the results of Graves et al. [7]. In our
knowledge discovery process we use value series for defect
prediction. Therefore, we measure how many authors have
implemented modifications to a given file and set this mea-
sure in relation to the number of modifications implemented

by these authors. We use relative measures, which have
shown to be better predictors than absolute measures [16].
Moreover, we observe the alteration of the number of authors
implementing modifications over time, which can pro-vide
more accurate data to the prediction models than met-rics
focusing on a fixed point in time.

Another interesting sub-series is the one containing
the number of commit messages in relation to the number of
changes. This CommitMsgs series has even the second
highest correlation coefficient in the commercial project and
ArgoUML. In the spring framework it is on position five with
a correlation coefficient of 0.48
It is quite surprising that the highest performance measures
are not reached by size or complexity metrics, but by process
and workflow related aspects such as Authors and
CommitMsgs. However, on the third position for ArgoUML
and Spring appears the series of TLinesAdd (see Table 3).
This attribute incorporates the number of lines changed
within a commit transaction counting added lines of all files
that are involved in the transaction. This series reflects an
aspect of the interdependency in object oriented software
systems, as we take changes to other (related) files within a
transaction into account. Contrary, the pure size measure of
added lines of a particular file is represented by LinesAdd.
Although this sub-series plays a remarkable role for the
commercial system, it has a very low correlation coefficient
in the open source projects. For the sub-series we conclude:
Projects have different rankings of sub-series, where
common aspects can be identified, such as the number of
authors or commit messages.
7.3 Limitations of the Study

Our models are based on evolution data taken from
versioning systems and the number of defects is established
with data from the issue tracking system. The matching
between these two systems is based on heuristics as described
in Section 3.3. Although, such an approach is frequently used
in research ([17, 18, 7, 20]) we cannot assure that we have
identified all bugs as we certainly miss the ones that were not
reported to the issue tracking system.

In general our mining approach is strongly
dependent on the quality of our data for the field study.
Validity of our findings is related with the data of the
versioning and issue tracking system. Versioning systems
register single events such as commits of developers, where
the data depends on the work habits of the developers.
However, in our previous work we showed that an averaging
effect supports statistical analysis in general [19].
Additionally, the data about work habits of people is by its
own interesting information that we use for our quality
prediction, where we can show that our prediction models
rely heavily on such features (e.g., number of commit
messages).

The data points of our value series are computed as
sums of each day. As a result, if a developer works through
the night and commits some modifications before midnight
and the remaining parts of modifications after midnight, we
count the work on two days. Although this influences our
value series, such information could still be valuable for
defect prediction, because the working over night might have
consequences on the level of concentration and the resulting
software quality.

Varaprakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4843-4849

4848

We have selected different projects for our field
study: commercial vs. open source; different domains such as
health care, UML and application server. However, we can-
not claim that these projects are representative for all
different types of software projects. As a result the
application of our approach to other software systems has to
be re-evaluated on a per project basis.

8. CONCLUSIONS

In this, we presented a new approach to software
defect prediction based on value series of evolution attributes:
We con-ducted one of the first studies utilizing value series
for defect prediction in software engineering. In this approach
an entire series of measurements is used to predict a single
label (the number of defects in a file containing object-
oriented entities). For the evaluation of our approach we
conducted a field study of three different software projects.
Each of them has its independent timeline regarding the
evolution phases and release cycles. We use a fixed date for
the data extraction from these projects, which results in a
randomized selection within the timeline of each individual
project.

The evolution measurements were obtained from
soft-ware repositories such as the concurrent versioning
system (CVS) where single information items such as the
number of authors were gathered into value series. Our
results showed that evolution series are excellent predictors
of defect densities. We describe an analysis focusing on sub-
series, where the prediction models based on series of a
single variable are sometimes even superior to the over-all
model. An interesting proponent of this category is the
number of authors, where good models can be created on (up
to a correlation coefficient of 0.946). Other aspects of
software evolution, which are often used in software
prediction, are less important (e.g. lines added).

9. REFERENCES
[1] J. Bevan, E. J. W. Jr., S. Kim, and M. W. Godfrey. Facili-tating

software evolution research with kenyon. In Proceed-ings of the
European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering, pages 177–186, Lisbon,
Portugal, September 2005.

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software En-gineering, 20(6):476–493,
June 1994.

[3] G. Denaro and M. Pezze`. An empirical evaluation of fault-proneness
models. In Proceedings of the International Con-ference on Software
Engineering, pages 241–251. ACM Press, May 2002.

[4] N. E. Fenton and M. Neil. A critique of software defect pre-diction
models. IEEE Transactions on Software Engineer-ing, 25(5):675–689,
September 1999.

[5] H. Gall, M. Jazayeri, and J. Ratzinger (former Krajewski). CVS release
history data for detecting logical couplings. In Proceedings of the
International Workshop on Principles of Software Evolution, pages 13–
23, Lisbon, Portugal, Septem-ber 2003. IEEE Computer Society Press.

[6] P. Geurts. Pattern extraction for time series classification. In
Proceedings of the European Conference on Principles of Data Mining
and Knowledge Discovery, pages 115–127, 2001.

[7] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault
incidence using software change history. IEEE Trans-actions on
Software Engineering, 26(7):653–661, 2000.

[8] M. W. Kadous. Learning comprehensible descriptions of multivariate
time series. In Proceedings of the Interna-tional Conference on
Machine Learning, pages 454–463, San Francisco, USA, June 1999.

[9] T. M. Khoshgoftaar, X. Yuan, E. B. Allen, W. D. Jones, and J. P.
Hudepohl. Uncertain classification of fault-prone soft-ware modules.
Empirical Software Engineering, 7(4):297– 318, December 2002.

[10] S. Kim, T. Zimmermann, J. E. James Whitehead, and A. Zeller.

Predicting faults from cached history. In Pro-ceedings of the
International Conference on Software Engi-neering, pages 20–26,
Minneapolis, USA, May 2007.

[11] P. Knab, M. Pinzger, and A. Bernstein. Predicting defect densities in
source code files with decision tree learners. In Proceedings of the
International Workshop on Mining Soft-ware Repositories, pages 119–
125, Shanghai, China, May 2006. ACM Press.

[12] S. Manganaris. Supervised Classification with Temporal Data. PhD
thesis, Computer Science Department, School of Engineering,
Vanderbilt University, December 1997.

[13] T. Menzies, J. Greenwald, and A. Frank. Data mining static code
attributes to learn defect predictors. IEEE Transactions on Software
Engineering, 33(1):2–13, 2007.

[14] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler.
YALE: Rapid prototyping for complex data min- ing tasks. In
Proceedings of the International Conference on Knowledge Discovery
and Data Mining, pages 935–940, Philadelphia, USA, 2006.

[15] A. Mockus and L. G. Votta. Identifying reasons for soft-ware changes
using historic databases. In Proceedings of the International Conference
on Software Maintenance, pages 120–130. IEEE Computer Society,
2000.

[16] N. Nagappan and T. Ball. Use of relative code churn mea-sures to
predict system defect density. In Proceedings of the International
Conference on Software Engineering, pages 284–292, St. Louis, MO,
USA, May 2005. ACM Press.

[17] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. In Proceedings of the Interna-tional Conference on
Software Engineering, pages 452–461, Shanghai, China, May 2006.
ACM Press.

[18] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs are. In
Proceedings on the International Symposium on Software Testing and
Analysis, pages 86–96, Boston, Mas-sachusetts, USA, July 2004.

[19] J. Ratzinger, M. Fischer, and H. Gall. Evolens: Lens-view
visualizations of evolution data. In Proceedings of the In-ternational
Workshop on Principles of Software Evolution, pages 103–112,
Lisbon, Portugal, September 2005.

[20] J. Ratzinger, M. Pinzger, and H. Gall. EQ-Mine: Predicting short-term
defects for software evolution. In Proceedings of the Fundamental
Approaches to Software Engineering at the European Joint Conferences
on Theory And Practice of Software, pages 12–26, Braga, Portugal,
March 2007.

[21] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall. Mining software
evolution to predict refactoring. In Proceedings of the International
Symposium on Empirical Software Engi-neering and Measurement,
page to appear, Madrid, Spain, September 2007.

[22] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining
version histories to guide software changes. In Pro-ceedings of the
International Conference on Software Engi-neering, volume 00, pages
563–572, Edinburgh, Scotland, UK, May 2004.

AUTHORS BIOGRAPHY

Varaprakash is completed M.Tech in Software
Engineering from GITAM UNIVERSITY,
Visakhapatnam, A.P., INDIA. His research areas
include Software Reliability, Software Quality and
Software Cost Estimation Techniques.

 Praveen Kumar Malladi is completed M.Tech in
Software Engineering from GITAM UNIVERSITY,
Visakhapatnam, A.P., INDIA. His research areas
include Software Reliability, Software Quality and
Software Cost Estimation Techniques.

 Venkata Kiran Talluri is completed M.Tech in
Software Engineering from GITAM UNIVERSITY,
Visakhapatnam, A.P., INDIA. His research areas
include Software Reliability, Software Quality and
Software Cost Estimation Techniques.

Varaprakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4843-4849

4849

