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Abstract— The Varity and complexity of software increased 
from day to day, the software quality assurance must be used to 
make a balance between quality and productivity. In software 
applications defect density and defect prediction are essential 
for efficient resource allocation in software evolution. We 
presented a new approach to software defect prediction based 
on value series of evolution attributes. In an empirical study we 
applied data mining techniques for value series based on 
evolution attributes. For that, we developed models utilizing 
genetic programming and linear regression to accurately predict 
software defects. In our study, we investigated the data of three 
independent projects, two open source and one commercial 
software system. The results show that by utilizing series of 
these attributes we obtain models with high correlation 
coefficients (between 0.716 and 0.946). Further, we argue that 
prediction models based on series of a single variable are 
sometimes superior to the model including all attributes: in 
contrast to other studies that resulted in size or complexity 
measures as predictors, we have identified the number of 
authors and the number of commit messages to versioning 
systems as excellent predictors of defect densities. 
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I.  INTRODUCTION 
In Software, how does the course of development 

over time influence defect densities? To address this question 
we focus on series classification techniques, where we 
generate value series from software evolution and take it as 
input for quality assessment. 

Defect prediction models of previous studies often 
relied on metrics that represent the state of the software 
system at a specific moment in time. Such metrics describe, 
for example, the sum of changes implemented on a certain 
part of the system or are other types of measures such as size 
and complexity metrics [2]. 

In this paper we show that change over time is an 
important aspect in software prediction models. The time-
related features have been very important for good prediction 
models, we go a step further and explicitly focus on series of 
metric values. 

Sequential patterns are important in many domains, 
be-cause they can be exploited to improve the prediction 
accuracy of classifiers. A sequence x =(x1, x2, x3, . . . , x n)of 
change events during software development contains the in-
formation on the course of development additionally to the 
pure attributes of the sum of all change events describing the 
state at the final point in time. As one of the first studies we 
analyze value series of evolution data to create defect 
prediction models. 

Our evolution attributes of source files refer to 
measures obtained from versioning and bug reporting data 
such as the number of bug fixes or the number of authors 
working on a particular file. Evolution attributes are 
measured daily over a period of two months to predict the 

number of defects in source files in the subsequent two 
months. The data of three independent software projects in 
our field study allows us to build prediction models with high 
accuracy using series of evolution attributes. 

Our study can be compared to other prediction 
approaches since we included the same data of a previous 
study [20] taken from a commercial system into our analysis. 
Additionally, we broadened our evaluation by incorporating 
data from open source projects and created prediction models 
on the evolution data of these different software projects. 

This paper is organized as follows. We present a 
description of our knowledge discovery process in Section 2. 
Section 3 lays the foundation through the preparation of 
evolution data. Section 4 explains how we set up evolution 
series, which are used as input to the series mining of Section 
5. 

Our results are reported in Section 6 , in section 7 
and Section 8 finishes with conclusions. 
 

2. KNOWLEDGE DISCOVERY PROCESS 
Several consecutive steps are executed in our 

knowledge discovery process to obtain prediction models 
based on value series. The basic process is as follows: 

First, the data collection steps extract evolution data 
from two sources: versioning systems such as CVS and issue 
tracking systems such as Jira. Data items taken from different 
systems have to be assembled into a joined data model to 
establish an evolution database. Additionally, a relation-ship 
is established between the data items from a single data 
source (e.g. the transactions of the versioning system are 
reconstructed to group items into sets of co-changed 
elements). 

Next, the evolution database is used to compute 
change attributes such as the number of lines added for bug 
fixes, the number of co-changed files, or the number of 
modifications without a commit message. These are the 
characteristics of our data items that are used to create value 
series for defect prediction. Fenton and Neil pointed out that 
a sound prediction model has to incorporate different types of 
attributes [4]. Accordingly, we analyze several types of 
attributes, where a value series is created for each attribute 
type. Additionally, series containing attributes of all 
categories represent the changes over time for a single 
instance (i.e. a file). 

In the next step we take the value series of evolution 
at-tributes as the basis for our defect prediction models. To be 
able to apply classification algorithms to the value series we 
extract features describing the relevant characteristics of the 
value series. In data mining the input attributes used by the 
algorithms are called features. An example of such a feature 
is the maximum number of files changed to-gether regarding 
a particular file. The feature extraction is done automatically 
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with the help of genetic programming, in which several 
operations are applied on the data points in the value series. 
The genetic algorithm searches the feature space guided by a 
fitness function (i.e. the correlation coefficient of our defect 
prediction models).  

The best features discovered through genetic 
programming are the input of the regression algorithms to 
create the prediction model. The platform for our series 
mining activities is the YALE machine learning environment 
[14]. It allows the design of operator chains for a large 
number of learning problems and includes many data mining 
algorithms such as support vector machines, decision tree 
learners, Bayesian learners, etc. 

Finally, we describe the results of a field study, in 
which we applied the prediction models to several projects 
taken from three different domains to evaluate the accuracy 
of the prediction. The following sections describe each step in 
de-tail and present our results. 
 

3. PREPARING EVOLUTION DATA 
There are many different systems that all record 

different aspects of the development and evolution of a 
software system. Project managers have to be able to observe 
the status of individual tasks as well as the progress of the en-
tire project. Developers need information about what is re-
quested from them and need storage systems for their results. 
Thus, different aspects are covered by different systems, 
which we have to integrate for our analysis. 
3.1 Data Extraction 

As data sources for our defect prediction we utilize 
versioning and issue tracking systems. Currently our 
approach supports the versioning system CVS and the issue 
tracking systems Jira and Bugzilla. CVS keeps track of all 
changes in source files. For each file we retrieve these change 
logs, parse, and store the extracted information into the 
evolution database [20]. Issue or bug report data is obtained 
from Jira or Bugzilla. These systems track bug and feature 
requests from users and customers. We process each request 
and add the information to the database. 
3.2 Data Processing 

Software components are related with each other 
through shared data or method calls, or inheritance relations. 
During software development a relationship is also 
established when developers work on several classes or 
modules to accomplish a certain task. Co-change coupling 
during the evolution of a software system provides valuable 
information in the context of maintenance [5]. We obtain 
couplings from the versioning systems by reconstructing 
transactions when files are submitted together to CVS. Thus, 
transactions Tn are defined as a set of files, which were 
checked-in into a versioning system by a single author with 
an equal commit message. To capture the entire transaction, 
possibly lasting several minutes we use a dynamic time 
window approach. Every file submission outside of a 
previous transaction de-fines the start of a new transaction 
lasting initially for 60 seconds. When another file submission 
is discovered within the time frame of this transaction then 
the file is added and the transaction time is expanded to last 
until 60 seconds after the last file submission time. 
 

Co-change coupling is established based on common 

transactions of files. Two entities (e.g. files) are coupled, if a 
modification of the implementation affected both entities. The 
intensity of coupling between two entities a, b can be 
determined by counting all transactions where a and b are 
members of the same transaction, i.e., C = {(a, b) |a, b �  T n} 
is the set of change couplings and |C| is the intensity of 
coupling [19]. 
3.3 Combining Data Sources 

To count defect densities of files we attach defect in-
formation stored in the issue tracking system with the file 
information from the versioning system. For this step we 
inspect the commit messages associated with revisions of 
source files for references to issues, which is accomplished 
with regular expressions. When a matching issue is found, a 
link between the issue and the corresponding CVS log entry 
is stored only if the creation date of this issue is before the 
submission of the file to CVS. 

 
4. GENERATING EVOLUTION SERIES 

In this paper the focus is on the lifetime of source 
files during software evolution. For this we measure a set of 
evolution attributes for each source file over time and 
compose multiple value series describing the data points of 
the at-tributes as a sequence of measures. In our field study 
we use two months of development time to predict the defects 
of the following two months (see Section 6.2). The first two 
months comprise 61 days. On all days of this series period we 
measure the attributes for each file. For example the number 
of lines added within one day is summarized for the data 
points of this attribute in the value series. As a result many 
values in the series are zero, as in a development project not 
all source files are modified on each day. The number of 
defects is predicted for the entire period of the following two 
months for each source file. Thus, the in-stances for the 
prediction models are files. In the following we describe the 
different evolution attributes and the generation of series in 
detail. 

A definition of generalized series is used for value 
series: In a series each element xi is composed of two 
components. The first is the index describing a position on a 
straight line (e.g. time). The second is a vector of values. In 
our case we use two types of vectors. One is a reduced case 
where only one attribute represents the vector. In the second 
case the dimension of the vector is given by the number of 
evolution attributes . 
4.1 Evolution Attributes 

Using the information stored in the evolution 
database we compute a number of attributes that quantify the 
soft-ware evolution in a source file. According to previous 
studies, which showed that relative data outperforms absolute 
values in defect prediction [16], we use the following 
evolution attributes as foundation for our value series of 
relative measures. All measures are collected within a time 
frame of two months, where the data points are accumulated. 
• Lines Added this measure represents the sum of lines 
added. This measure is one of the indicators of size, where 
the developer probably adds functionality through new source 
lines.  
• Lines Deleted describes the number of lines removed 
from a file. When a certain line is changed the versioning 
system counts one line added and one line re-moved. The 
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number of deleted lines is additionally an indicator for a 
”clean up” mentality to keep only the used code.  
• Number Changes is the number of modifications 
implemented within a single day on a given file. This is a 
general activity indicator.  
• Number Authors is the number of authors working on a 
single file. When several authors work on the same day on 
one file, we expect interferences between the changes.  
• Author Switches describes the number of times the work 
of a file is handed over from one author to an-other. When, 
for example, two authors work in the sequence author1, 
author2, author2, author1 we denote two author switches. 
When the work of several authors is strongly interwoven, we 
expect the strongest impact on defects.  
• Commit Messages indicates the number of different 
commit message from developers on changes. We see the 
commit message as an indicator for the discipline of 
developers, as developers sometimes tend to reuse the 
message of the last commit instead of describing the actual 
work.  
• With No Message describes the number of changes 
without a commit message. This provides insight into the 
discipline of the developers. This could be an indicator that 
the developer is in a hurry.  
• Number Bugfixes is the number of issues that caused 
changes in the file. A file with many defects in the past is 
expected to have defects in the future [7].  
• Bugfix Lines Added is the counterpart to the number of 
lines added, but this time the number of lines is only taken 
into account if the change is a bug fix according to the 
information from the issue tracking system.  
• Bug-fix Lines Deleted measures the number of lines 
deleted from a file only for bug fixes. 
• Couplings are the strength of co-change coupling of a 
file with other files. It counts how many times a change was 
done with other files. Coupling has been an indicator for 
architectural weaknesses [19].  
• Co-Changed Files – in contrast to the Couplings – de-
scribes the number of files that were changed together with 
the file of interest. For several modifications each co-changed 
files is counted only once. We expect the more files are 
changed together, the higher is the complexity and the more 
difficult it is to keep the consistency.  
• Co-Changed New Files is the number of files that were 
created together with a change to the investigated file. When 
new files are introduced into a system, it is an indicator for 
growth and new functionality.  
• Transaction Lines Added is the number of lines added in 
all files that have couplings with the file of interest. This 
measure the entire work of a commit of files that are related 
to the file of interest.  
• Transaction Lines Deleted is the number of lines deleted 
in all files with common transactions on changes.  
• Transaction Bug-fix Lines Added measures the number 
of lines added for all files during a change event that treats a 
bug.  
• Transaction Bug-fix Lines Added describes the number 
of lines deleted for all files during bug fixes together with the 
file of interest.  
4.2 Value Series 

The absolute values of the evolution attributes, 

which are described in the previous section, are used to 
construct the final value series containing relative measures 
ordered by time. For each day the relative attribute value is 
computed and added to the value series. For example, we use 
the number of authors relative to the number of changes on 
each day in our series period. The sequence 1/1, 0, 2/3, 1/1 
would result for four days when one change is committed on 
the first day, no change happens on the second day, two 
developers implemented a total of three changes on the third 
day, and one change is committed on the fourth day. 

The following list of relative measures is used to 
create value series per file for each day. For each relative 
feature a division of relative values from the previous section 
is computed. 
• LinesAdd: Lines of code added within a day / Total lines 
of code until this day. 
• LinesDel: Lines of code deleted within a day / Total lines 
of code until this day.  
• ChangeCount: Number of changes within a day / Total 
number of changes in the history of the file until this day.  
• Authors: Number of authors within a day / Number of 
changes within this day  
• AuthorSwitches: Number of switches of the author / 
Number of authors  
• CommitMessages: Number of different commit mes-
sages / Number of changes  
• WithNoMessage: Number of changes without commit 
message / Number of commit messages  
• BugfixCount: Number of bug fixes / Number of changes  
• BugfixLinesAdd: Lines added for bug fixes / Number of 
lines added (any type)  
• BugfixLinesDel: Lines deleted for bug fixes / Number of 
lines deleted (any type)  
• CoChangeCount: Number of couplings / Number of 
changes  
• CoChangedFiles: Number of co-changed files / Number 
of changes  
• CoChangedNewFiles: Number of newly introduced files 
that are co-changed / Number of co-changed files  
• TLinesAdd: Number of lines added in all co-changed 
files / Number of couplings  
• TLinesDel: Number of lines deleted in all co-changed 
files / Number of couplings  
• TBugfixLinesAdd: Number of lines added in all files for 
bug fixes / Number of lines added  
• TBugfixLinesDel: Number of lines deleted in all files for 
bug fixes / Number of lines deleted  
 

5. PREDICTING DEFECTS BASED ON EVOLUTION SERIES 
Given the value series of relative evolution attributes 

as described in the previous section, the aim of our approach 
is to derive models for predicting the number of defects in 
source files. For the model generation we use”classical” data 
mining algorithms such as linear regression. These algorithms 
are not able to handle value series in the explicit 
representation, but can operate on sets of attributes instead of 
sets of series of values. 
We generate a new representation of our series information 
that is suitable for linear regression. This task is called feature 
extraction, where each series is described by a set of relevant 
characteristics that make different evolution series 
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distinguishable. In a similar manner we could describe a 
value series containing positions of the sun on earth with the 
following features: one cycle lasts for 24 hours, the maxi-
mum is reached at noon, and sunrise and sunset are related 
with the degree of latitude on earth. 
The feature extraction itself is decomposed into a set of basic 
operators. For example functions returning the minimum, 
average, or maximum of the values in a series are basic 
operators. Other basic operators return an index such as the 
location of a peak value within a given series. Such basic 
operators are assembled into an operator tree describing the 
extraction steps of the final features. However, the manual 
selection of an optimal set of operators is a tedious task. 
Therefore, machine learning is used to select appropriate 
operator tree, where the selection is done with the help of 
genetic algorithms. 

Thus we have to carry out two learning tasks for our 
defect prediction. 
1. Learning a set of operator trees for the feature extraction 
utilizing genetic programming. The resulting features 
describe relevant characteristics of evolution series for data 
mining algorithms such as linear regression.  
2. Learning a model for defect prediction from the 
extracted features.  
5.1 Extracting Features from Series 

In the process of feature extraction a set of basic 
operators is organized into a tree, where each operator uses 
the output of the predecessor. The output of the operators at 
the leaves produce the features of the series. We distinguish 
two types of basic operators: Transformations and functions: 
Transformations convert a series into another series. 
Different types of transformations are available for our defect 
prediction approach such as filters (e.g. smoothing), 
frequency transformations (e.g. Fourier transformation), 
generalized windowing, etc. Windowing operators apply a 
given function on a range of values within the series and 
additionally slide the window over the series. Others are 
branches that pass on the interim results to two successor sub-
trees. 
Functions generate single values based on the entire value 
series and are always the last step of the feature ex-traction 
process (i.e. the leaf nodes of the operator tree). Examples of 
functions are statistics such as average, variance, standard 
deviation. These functions may be applied on the values 
themselves or on the indexes of the values, where for 
example the index of a peak value could be extracted. For an 
extensive list of transformations and functions see [14]. 
5.1.1 Genetic Programming 

The (locally) optimal feature extraction approach 
(i.e. operator tree of transformations and functions) is elicited 
with genetic programming utilized on the operator trees. 
Mutations randomly insert a new operator, delete an operator, 
replace an operator, or change the parameters of an operator. 
Crossover switches a sub-tree from one feature description 
tree by a sub-tree from another tree. According to the 
standard process of genetic programming the instances with 
the highest fitness are selected for the next generation. 
Selection is done based on a tournament between all members 
of a generation in the genetic algorithm. 
Fitness of the operator trees for the tournament selection is 
assessed based on the defect prediction capability of the 

resulting features. Our fitness function is the regression 
algorithm itself that is used for the generation of the 
prediction model. Thus, for each operator tree a regression 
function is generated based on a training set of a random 
sample containing 50 evolution series instances and the 
accuracy of the prediction of defects is used as the fitness 
value. As a result, the operator trees generating features that 
predict the defects best are selected for the next generation. 
Initiation of the first generation in the genetic algorithm is 
based on 50 operator trees, where the operators are randomly 
selected from the pool of available transformations and 
functions. 
We limited the maximal number of generations by 8. Further, 
the following parameters are defined for our approach: 
probability of adding a new operator = 0.4, probability of 
adding a branching operator to create new sub-trees = 0.05, 
probability of changing an operator = 0.4, probability of 
removing an operator = 0.2, probability of performing a 
crossover = 0.5, probability of changing a parameter = 0.1. 
 
5.2 Applying Data-Mining Algorithms to Series Features  

The best features selected by the genetic programming 
algorithm are used for the creation of the prediction of 
defects. The data mining algorithm for our prediction is linear 
regression, as our outcome as well as our features from value 
series are numeric. This is a staple method in statistics where 
the predicted value is represented by a linear combination of 
the input attributes (i.e. features) with weights w0, w1, w2, . . . 
, w n and attributes a1, a2, . . . , an: 

x = w0 + w1a1 + w2a2 + . . . + w n a n 
The weights are derived from the training data set 

minimizing the sum of squares of the distance between the 
predicted value x and the actual one y. The distance is 
summarized for all instances (k) of the training data set: 

∑(y-∑ wi ai )2 

                         k      n 
The numeric prediction algorithms are used twice in 

our process. First it is used for the evaluation of fitness in 
genetic programming, where prediction models are build on a 
small random sample of evolution series and the correlation 
coefficient is utilized to select the best features. Finally, we 
apply the prediction algorithms on the extracted features 
taking all instances of the training set (i.e. all evolution 
series) into account to create the final prediction model. 
 

6. EVALUATION 
We evaluated the approach of defect prediction 

based on series mining with the help of a field study, where 
we selected different real world projects and analyzed the 
predictability of defects in the near future. 
6.1 Field Study 

In our field study we analyzed two open source 
projects (ArgoUML and the spring framework) and a 
commercial software system, which we selected to get 
comparability with the results of previous studies ([20, 21]). 
The commercial software system is from the health care 
domain, written in Java and contains more than 8.600 classes 
with 735.000 lines of code. ArgoUML and the spring 
framework are large well-known open source projects both 
developed in Java and consist of about 5.000 and 10.000 
classes, respectively. In Java classes are almost equivalent to 
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files, thus we use files as basic instances in our analysis. 
6.2 Evaluation Setup 

To estimate the accuracy of our defect prediction 
approach we use the same time periods for all projects, 
regard-less in which development state the project is. In a 
previous study we have shown that defects that occur within a 
short time before a release can be better predicted than 
defects after a release [20]. In our current research activity we 
have two periods: 
Series Period: November-December 2005. In this period we 
take evolution attributes from the versioning system and 
construct value series to represent the flow of the 
development over time. Each series of the at-tributes from 
Section 4.2 has a length of 61 days given the two months of 
the series period. This information is used in our series 
mining to predict the defects of a source file in the next 
period. 
• Target Period: January-February 2006. With our prediction 
models based on series mining we try to predict the number 
of all defects in the target period, where the defects are 
counted based on the information from the issue tracking 
system and are mapped to files as described in Section 
3.3.These two periods are also used in our previous study 
[20] and thus enable us to compare the results of these two 
approaches. 
6.3 Measuring Prediction Performance 
For the assessment of our prediction models we use the 
following metrics: 
• Correlation Coefficient (Cor. C.) ranges from -1 to 1 and 
measures the statistical correlation between the predicted 
values and the actual ones in the test set. A value of 0 
indicates no correlation, whereas 1 describes a perfect 
correlation. Negative correlation indicates inverse correlation, 
but should not occur for prediction models. The correlation 
coefficient is computed with the following formula, where p 
are the predicted values and a are the actual ones: 

 
Where 𝒑 =1/n ∑ i pi  and 𝒂 =1/n ∑ i ai 
The correlation coefficient is our primary performance 
indicator. 
• Mean Absolute Error (Abs. Error) is the average of the 
magnitude of individual absolute errors. This assessment 
metrics does not have a fixed range like the correlation 
coefficient, but is geared to the values to be predicted. As a 
result, the closer the mean absolute error is to 0 the better. A 
value of 1 denotes that on average the predicted value differs 
from the actual number of defects by 1 (e.g. 3 instead of 4). 
The mean absolute error is computed with the following 
formula: 

( |p1 – a1| + . . . + |pn – an| ) / n 
• Mean Squared Error is the average of the squared 
magnitude of individual errors and it tends to exaggerate the 
effect of outliers – instances with larger prediction error – 
more than mean absolute error. The range of the mean 
squared error is geared to the ranges of predicted values, 
similar to the mean absolute error. But this time the error 
metrics is squared, which overemphasize predictions that are 
far away of the actual number of defects. The quality of the 
prediction model is good, when the mean squared error is 

close to the mean absolute error. The formula for mean 
squared error is: 

( (p1-a1)2+…..+ ( pn-an)2 ) / n 
As validation method we use 10-fold cross 

validation to estimate the performance of our prediction 
models. In this method the set of source files is randomly 
split into 10 disjoint sets of equal size. The validation is 
executed 10 times, where the linear regression is trained on 9 
of 10 folds and the remaining one is used to calculate the 
error rates and the correlation coefficient. After the 10 turns 
the final performance estimates are generated through 
averaging the results of the 10 turns. 

The validation used two times: First it is used for the 
assessment of the fitness of the features during genetic 
programming and finally it is used for the assessment of the 
prediction models resulting from linear regression with the 
best features (see Section 5). 

 
7. RESULTS 

In the following we describe the field study with the 
selected software projects and discuss performance measures 
of our prediction models. Furthermore, we investigate the 
significance of evolution attributes. 
7.1 How well can we predict the number of defects in 

source files with series mining?  
To answer this question we take the entire evolution 

series containing values of all attributes such as LinesAdd or 
Au-thors (see Section 4.2). Table 1 describes the performance 
measures of our defect prediction models. The first remark-
able number is the very high correlation coefficient of the 
commercial system from the healthcare domain. A correlation 
coefficient of 1 would indicate perfect correlation of the 
prediction with the actual value, where the received 0.946 
indicates that very strong prediction models can be built 
based on evolution series. The other two projects reach a 
correlation coefficient greater than 0.7, which is still good. 

According to the first performance indicator also the 
mean absolute error of all projects is low. The absolute error 
has to be measured in relation with the predicted quantities. 
In our case we predict the number of defects that lie in the 
range of 0 up to 7. As a result, the measured mean absolute 
errors of 0.208 to 0.306 are low. The commercial project has 
a higher absolute error than the two open source projects 
because it has more files with multiple defects (e.g. 5 or 6 
defects), which can be seen in Table 2. 

 
Table1. Defect prediction with series including all 

evolution attributes 

 Cor.C. Abs.Error Sqr.Error 
Commercial system 0.946 0.306 0.508 
Spring framework 0.716 0.229 0.770 

ArgoUML 0.730 0.208 0.624 
 

Table2. Defect distribution 

No. of defects Comm. Spring Argo 
per file System  UML 

1 46 80 47 
2 11 15 9 
3 5 3 2 
4 7 2 0 
5 2 0 0 
6 1 0 0 
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The good prediction measures are supported by the 
mean squared error, which emphasizes outliers more than the 
mean absolute error. The squared error is lowest for the 
commercial project with a value of 0.508. This corresponds 
with the high correlation coefficient and indicates that the 
prediction is very accurate. However, also the squared errors 
of Spring with 0.770 and of ArgoUML with 0.624 are low. 
Thus, we conclude: 
“Accurate prediction models can be developed based on 
series mining of evolution data”. 

7.2 Which attributes are most significant for defect 
prediction?  

In the previous section we presented prediction 
models based on series mining with a very high correlation 
coefficient and good error measures. These models are 
created from an evolution series containing all attributes 
described in Section 4. We are interested to find out which 
attributes are most significant to create accurate prediction 
models. For this we create prediction models on value series 
for each single evolution attribute. Table 3 presents the 
correlation coefficients of all generated models, as this 
performance indicator represents the relationship between the 
predicted values and the actual ones. 

All three projects of the field study exhibit high 
values for the correlation coefficient on the series containing 
the number of authors. In the commercial system as well as in 
ArgoUML this single series is even the one with the highest 
correlation coefficient. For the spring framework it is only 
exceeded by the series with ChangeCounts, which describes 
the number of changes per day in relation to total number of 
changes for this particular file. In the two other projects the 
ChangeCount is ranked only in the middle-field. 

Table3. Correlation coefficients of series with a 
single attribute and the summarizing series 

including all attributes 

 Comm. Spring Argo 
 Cor.C. Cor.C. Cor.C. 

LinesAdd 0.616 0.195 0.161 
LinesDel 0.305 0.111 0.234 

ChangeCount 0.517 0.653 0.268 
Authors 0.946 0.628 0.760 

AuthorSwitches 0.622 0.210 0.357 
CommitMsgs 0.943 0.480 0.459 
WithNoMsg 0.273 0.008 -0.054 
BugfixCount 0.455 0.290 0.253 

BugfixLinesAdd 0.437 0.294 0.295 
BugfixLinesDel 0.736 0.319 0.244 

CoChangeCount 0.548 0.336 0.388 
CoChangedFiles 0.481 0.240 0.409 
CoChangedNew 0.426 0.171 0.233 

TLinesAdd 0.598 0.622 0.442 
TLinesDel 0.586 0.579 0.225 

TBugfixLinesAdd 0.482 0.318 0.362 
TBugfixLinesDel 0.460 0.319 0.296 

series of all attributes 0.946 0.716 0.730 
 

Authors seems to provide good input to series 
mining, which contrasts the results of Graves et al. [7]. In our 
knowledge discovery process we use value series for defect 
prediction. Therefore, we measure how many authors have 
implemented modifications to a given file and set this mea-
sure in relation to the number of modifications implemented 

by these authors. We use relative measures, which have 
shown to be better predictors than absolute measures [16]. 
Moreover, we observe the alteration of the number of authors 
implementing modifications over time, which can pro-vide 
more accurate data to the prediction models than met-rics 
focusing on a fixed point in time. 

Another interesting sub-series is the one containing 
the number of commit messages in relation to the number of 
changes. This CommitMsgs series has even the second 
highest correlation coefficient in the commercial project and 
ArgoUML. In the spring framework it is on position five with 
a correlation coefficient of 0.48 
It is quite surprising that the highest performance measures 
are not reached by size or complexity metrics, but by process 
and workflow related aspects such as Authors and 
CommitMsgs. However, on the third position for ArgoUML 
and Spring appears the series of TLinesAdd (see Table 3). 
This attribute incorporates the number of lines changed 
within a commit transaction counting added lines of all files 
that are involved in the transaction. This series reflects an 
aspect of the interdependency in object oriented software 
systems, as we take changes to other (related) files within a 
transaction into account. Contrary, the pure size measure of 
added lines of a particular file is represented by LinesAdd. 
Although this sub-series plays a remarkable role for the 
commercial system, it has a very low correlation coefficient 
in the open source projects. For the sub-series we conclude: 
Projects have different rankings of sub-series, where 
common aspects can be identified, such as the number of 
authors or commit messages. 
7.3 Limitations of the Study 

Our models are based on evolution data taken from 
versioning systems and the number of defects is established 
with data from the issue tracking system. The matching 
between these two systems is based on heuristics as described 
in Section 3.3. Although, such an approach is frequently used 
in research ([17, 18, 7, 20]) we cannot assure that we have 
identified all bugs as we certainly miss the ones that were not 
reported to the issue tracking system. 

In general our mining approach is strongly 
dependent on the quality of our data for the field study. 
Validity of our findings is related with the data of the 
versioning and issue tracking system. Versioning systems 
register single events such as commits of developers, where 
the data depends on the work habits of the developers. 
However, in our previous work we showed that an averaging 
effect supports statistical analysis in general [19]. 
Additionally, the data about work habits of people is by its 
own interesting information that we use for our quality 
prediction, where we can show that our prediction models 
rely heavily on such features (e.g., number of commit 
messages). 

The data points of our value series are computed as 
sums of each day. As a result, if a developer works through 
the night and commits some modifications before midnight 
and the remaining parts of modifications after midnight, we 
count the work on two days. Although this influences our 
value series, such information could still be valuable for 
defect prediction, because the working over night might have 
consequences on the level of concentration and the resulting 
software quality. 
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We have selected different projects for our field 
study: commercial vs. open source; different domains such as 
health care, UML and application server. However, we can-
not claim that these projects are representative for all 
different types of software projects. As a result the 
application of our approach to other software systems has to 
be re-evaluated on a per project basis. 

 
8. CONCLUSIONS 

In this, we presented a new approach to software 
defect prediction based on value series of evolution attributes: 
We con-ducted one of the first studies utilizing value series 
for defect prediction in software engineering. In this approach 
an entire series of measurements is used to predict a single 
label (the number of defects in a file containing object-
oriented entities). For the evaluation of our approach we 
conducted a field study of three different software projects. 
Each of them has its independent timeline regarding the 
evolution phases and release cycles. We use a fixed date for 
the data extraction from these projects, which results in a 
randomized selection within the timeline of each individual 
project. 

The evolution measurements were obtained from 
soft-ware repositories such as the concurrent versioning 
system (CVS) where single information items such as the 
number of authors were gathered into value series. Our 
results showed that evolution series are excellent predictors 
of defect densities. We describe an analysis focusing on sub-
series, where the prediction models based on series of a 
single variable are sometimes even superior to the over-all 
model. An interesting proponent of this category is the 
number of authors, where good models can be created on (up 
to a correlation coefficient of 0.946). Other aspects of 
software evolution, which are often used in software 
prediction, are less important (e.g. lines added). 
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